Journal articles

  1. Hogg, C.J. Translating genomic advances into biodiversity conservation. Nat Rev Genet (2023). doi: 10.1038/s41576-023-00671-0
  2. Lu, A. T., et al. (2023). Universal DNA methylation age across mammalian tissues. Nature Aging. doi: 10.1038/s43587-023-00462-6
  3. Haghani, A., et al. (2023). DNA methylation networks underlying mammalian traits. Science, 381(6658), eabq5693. doi: 10.1126/science.abq5693
  4. Pierson, J. C., et al. (2023). Adaptive Genetic Management of a Reintroduction Program from Captive Breeding to Metapopulation Management of an Arboreal Marsupial. Diversity, 15(7), 848. doi: 1424-2818/15/7/848
  5. Farquharson, K., McLennan, E., Belov, K., & Hogg, C. (2023). The genome sequence of the critically endangered Kroombit tinkerfrog (Taudactylus pleione). F1000Research, 12(845). doi: 10.12688/f1000research.138571.1
  6. Petrohilos, C. et al. (2023). Tasmanian devil cathelicidins exhibit anticancer activity against Devil Facial Tumour Disease (DFTD) cells. Science  Report 13, 12698. doi: 10.1038/s41598-023-39901-0
  7. Smith, D. et al. (2023). Extinct in the wild: The precarious state of Earth’s most threatened group of species. Science, 379, eadd2889. doi: 10.1126/science.add2889
  8. Dodge, T. O., et al. (2023). Genomes of two Extinct‐in‐the‐Wild reptiles from Christmas Island reveal distinct evolutionary histories and conservation insights. Molecular Ecology Resources. doi:10.1111/1755-0998.13780
  9. Stojanovic, D., et al.  (2023). Conservation management in the context of unidentified and unmitigated threatening processes. Biodiversity and Conservation, 1-17. doi: 10.1007/s10531-023-02568-0
  10. Hogg, C. J., et al. (2023). Koala Genome Survey: An Open Data Resource to Improve Conservation Planning. Genes, 14(3), 546.  doi: 10.3390/genes14030546
  11. Dalrymple, S.E., et al. (2023). Addressing Threats and Ecosystem Intactness to Enable Action for Extinct in the Wild Species. Diversity 15, 268. doi.org/10.3390/d15020268
  12. Stojanovic, D., et al. (2023). Reproductive skew in a Vulnerable bird favors breeders that monopolize nest cavities. Animal Conservation. doi: 10.1111/acv.12855
  1. Pritchard, R. A., et al. (2022). Identifying cost‐effective recovery actions for a critically endangered species. Conservation Science and Practice, 4(1), e546. doi: 10.1111/csp2.546
  2. Hogg, C. J., & Belov, K. (2022). Reply to DeWoody et al.: Inequitable access to affordable sequencing limits the benefits from population genomic insights. Proceedings of the National Academy of Sciences, 119(40), e2211129119. doi: 10.1073/pnas.2211129119
  3. Peel, E., et al. (2022). Best genome sequencing strategies for annotation of complex immune gene families in wildlife. GigaScience, 11. doi: 10.1093/gigascience/giac100
  4. McLennan, E. A., et al.  (2022). DNA metabarcoding reveals a broad dietary range for Tasmanian devils introduced to a naive ecosystem. Ecology and Evolution, 12(5), e8936. doi: 10.1002/ece3.8936
  5. Farquharson, K. A., et al.  (2022). Restoring faith in conservation action: Maintaining wild genetic diversity through the Tasmanian devil insurance program. Iscience, 25(7), 104474. doi: 10.1016/j.isci.2022.104474
  6. Lott, M. J., et al. (2022). Future‐proofing the koala: Synergising genomic and environmental data for effective species management. Molecular Ecology, 31(11), 3035-3055. doi: 10.1111/mec.16446
  7. Silver, L. W., et al. (2022). A targeted approach to investigating immune genes of an iconic Australian marsupial. Molecular Ecology, 31(12), 3286-3303. doi: 10.1111/mec.16493
  8. Stojanovic, D. et al. (2022) Effects of non-random juvenile mortality on small, inbred populations. Biological Conservation 268, 109504 doi: 10.1111/acv.12855
  9. Peel, E. et al. (2022) Genome assembly of the numbat (Myrmecobius fasciatus), the only termitivorous marsupial. Gigabyte 2022, 1-17 doi: 10.1101/2022.02.13.480287
  10. McLennan, E.A. et al. (2022) How much is enough? Sampling intensity influences estimates of reproductive variance in an introduced population. Ecological Applications 32, e02462. doi: 10.1002/eap.2462
  11. Lewin, H.A. et al. (2022) The Earth BioGenome Project 2020: Starting the Clock. Proceedings of the National Academy of Sciences doi: 10.1073/pnas.2115635118
  12. Horvath, S. et al. (2022) Epigenetic clock and methylation studies in marsupials: opossums, Tasmanian devils, kangaroos, and wallabies. GeroScience. doi: 10.1007/s11357-022-00569-5
  13. Hogg, C.J. et al. (2022) Threatened Species Initiative: Empowering conservation action using genomic resources. Proceedings of the National Academy of Sciences 119, e2115643118. doi: 10.1073/pnas.2115643118
  14. Galla, S.J. et al. (2022) The relevance of pedigrees in the conservation genomics era. Molecular Ecology 31, 41-54. 10.1111/mec.16192 doi: 10.1111/mec.16192
  15. Feng, S. et al. (2022) Incomplete lineage sorting and phenotypic evolution in marsupials. Cell. doi: 10.1016/j.cell.2022.03.034
  16. Bessell, T.J. et al. (2022) Prioritising conservation actions for extremely data-poor species: A risk assessment for one of the world’s rarest marine fishes. Biological Conservation 268, 109501 doi: 10.1016/j.biocon.2022.109501
  1. Zhou, Y. et al. (2021) Platypus and echidna genomes reveal mammalian biology and evolution. Nature. doi: 10.1038/s41586-020-03039-0
  2. Zander, K.K. et al. (2021) Measuring social preferences for conservation management in Australia. Biological Conservation 262, 109323 doi: 10.1016/j.biocon.2021.109323
  3. Wright, B.R. et al. (2021) Assessing evolutionary processes over time in a conservation breeding program: a combined approach using molecular data, simulations and pedigree analysis. Biodiversity and Conservation, 1-19 doi: 10.1007/s10531-021-02128-4
  4. Wold, J. et al. (2021) Expanding the conservation genomics toolbox: incorporating structural variants to enhance functional studies for species of conservation concern. Molecular Ecology. doi: 10.1111/mec.16141
  5. Stojanovic, D. et al. (2021) Differences in wing shape of captive, critically endangered, migratory orange-bellied parrots Neophema chrysogaster relative to wild conspecifics. Emu-Austral Ornithology, 1-9 doi: 10.1080/01584197.2021.1872389
  6. Silver, L.W. et al. (2021) Genomics for conservation: a case study of behavioral genes in the Tasmanian devil. Conservation Genetics. doi: 10.1007/s10592-021-01354-1
  7. Peel, E. et al. (2021) A reference genome for the critically endangered woylie, Bettongia penicillata ogilbyi. GigaByte 35. doi: 10.1101/2021.12.07.471656
  8. Peel, E. et al. (2021) Annotation of immune genes in the extinct thylacine (Thylacinus cynocephalus). Immunogenetics, 1-13 doi: 10.1007/s00251-020-01197-z
  9. Peel, E. et al. (2021) Koala cathelicidin PhciCath5 has antimicrobial activity, including against Chlamydia pecorum. PLOS ONE 16, e0249658. doi: 10.1371/journal.pone.0249658
  10. Lu, A.T. et al. (2021) Universal DNA methylation age across mammalian tissues. bioRxiv, doi: 10.1101/2021.01.18.426733
  11. Hogg, C.J. et al. (2021) Using phylogenetics to explore interspecies genetic rescue options for a critically endangered parrot. Conservation Science and Practice, e483 doi: 10.1111/csp2.483
  12. Grueber, C.E. et al. (2021) First evidence of deviation from Mendelian proportions in a conservation programme. Molecular Ecology 30, 3703-3715 doi: 10.1111/mec.16004
  13. Glassock, G.L. et al. (2021) Reducing the Extinction Risk of Populations Threatened by Infectious Diseases. Diversity 13, 63. doi: 10.3390/d13020063
  14. Farquharson, K.A. et al. (2021) Metapopulation management of a critically endangered marsupial in the age of genomics. Global Ecology and Conservation, p.e01869 doi: 10.1016/j.gecco.2021.e01869
  15. Farquharson, K.A. et al. (2021) Offspring survival changes over generations of captive breeding. Nature communications 12, 1-9 doi: 10.1038/s41467-021-22631-0
  16. Cheng, Y. et al. (2021) Improved high‐throughput MHC typing for non‐model species using long‐read sequencing. Molecular Ecology Resources 22 (3), 862-876. doi: 10.1111/1755-0998.13511
  17. Brandies, P.A. et al. (2021) Characterization of reproductive gene diversity in the endangered Tasmanian devil. Molecular Ecology Resources 21, 721-732. doi: 10.1111/1755-0998.13295
  18. Brandies, P.A. and Hogg, C.J. (2021) Ten simple rules for getting started with command-line bioinformatics. PLOS Computational Biology 17, e1008645. doi: 10.1371/journal.pcbi.1008645
  1. Zhu, P. et al. (2020) Comprehensive knowledge of reservoir hosts is Key to mitigate Future pandemics. The Innovation, 100065
  2. Wright, B. et al. (2020) A demonstration of conservation genomics for threatened species management. Molecular Ecology Resources 20, 1526-1541. 10.1111/1755-0998.13211
  3. Stojanovic, D. et al. (2020) Body mass is not a useful measure of adaptation to captivity in the Orange-bellied Parrot Neophema chrysogaster. Emu-Austral Ornithology 120, 162-167. 10.1080/01584197.2019.1698302
  4. Pye, R. et al. (2020) Post release immune responses of Tasmanian devils vaccinated with an experimental devil facial tumour disease vaccine. bioRxiv. 10.1101/2020.12.06.408963
  5. Mulvena, S.R. et al. (2020) Investigating inbreeding in a free‑ranging, captive population of an Australian marsupial. CONSERVATION GENETICS. 10.1007/s10592-020-01278-2
  6. Morrison, C.E. et al. (2020) Genetic impacts of conservation management actions in a critically endangered parrot species. Conservation Genetics, 1-9. 10.1007/s10592-020-01292-4
  7. Morrison, C.E. et al. (2020) Low innate immune-gene diversity in the critically endangered orange-bellied parrot (Neophema chrysogaster). Emu-Austral Ornithology 120, 56-64
  8. McLennan, E. et al. (2020) Mixing genetically differentiated populations successfully boosts diversity of an endangered carnivore. Animal Conservation 23. 10.1111/acv.12589
  9. Lott, M. et al. (2020) Genetic management of captive and reintroduced bilby populations. Journal of Wildlife Management 84, 20-32
  10. Hogg, C.J. et al. (2020) Protect the Antarctic Peninsula – before it’s too late. Nature 586, 496-499
  11. Hogg, C. et al. (2020) Preserving the demographic and genetic integrity of a single source population during multiple translocations. Biological Conservation 241, 108318. 10.1016/j.biocon.2019.108318
  12. Grueber, C.E. et al. (2020) Genetic analysis of scat samples to inform conservation of the Tasmanian devil. Australian Zoologist 40, 492-504
  13. Gooley, R.M. et al. (2020) Inbreeding depression in one of the last DFTD-free wild populations of Tasmanian devils. PeerJ 8, e9220
  14. Farquharson, K.A. et al. (2020) Deciphering genetic mate choice: not so simple in group‐housed conservation breeding programs. Evolutionary Applications 13, 2179-2189. 10.1111/eva.12981
  15. Chong, R. et al. (2020) Marsupial Gut Microbiome. Frontiers in Microbiology 11, 1058
  16. Brandies, P.A. et al. (2020) The first Antechinus reference genome provides a resource for investigating the genetic basis of semelparity and age-related neuropathologies. GigaByte 1. 10.46471/gigabyte.7
  1. Young, L.J. et al. (2019) Molecular characterisation of Interleukin-2 in two Australian marsupials (the tammar wallaby, Notamacropus eugenii, and the Tasmanian devil, Sarcophilus harrisii) facilitates the development of marsupial-specific immunological reagents. Australian Mammalogy 41, 39-48. 10.1071/AM17027
  2. Wright, B.R. et al. (2019) Impact of reduced-representation sequencing protocols on detecting population structure in a threatened marsupial. Molecular Biology Reports. 10.1007/s11033-019-04966-6
  3. Wright, B. et al. (2019) From reference genomes to population genomics: comparing three reference-aligned reduced-representation sequencing pipelines in two wildlife species. BMC genomics 20, 453
  4. Stojanovic, D. et al. (2019) Body mass is not a useful measure of adaptation to captivity in the Orange-bellied Parrot Neophema chrysogaster. Emu-Austral Ornithology 120, 162-167
  5. Russell, T. et al. (2019) Multiple paternity and precocial breeding in wild Tasmanian devils, Sarcophilus harrisii (Marsupialia: Dasyuridae). Biological Journal of the Linnean Society. 10.1093/biolinnean/blz072
  6. McLennan, E.A. et al. (2019) Too much of a good thing? Finding the most informative genetic data set to answer conservation questions. Molecular Ecology Resources 19, 659-671. 10.1111/1755-0998.12997
  7. Hogg, C.J. et al. (2019) Founder relationships and conservation management: empirical kinships reveal the effect on breeding programmes when founders are assumed to be unrelated. Animal Conservation 22, 348-361. 10.1111/acv.12463
  8. Grueber, C.E. et al. (2019) A Tasmanian devil breeding program to support wild recovery. Reproduction, Fertility and Development 31, 1296-1304. https://doi.org/10.1071/RD18152
  9. Grueber, C.E. et al. (2019) Complex problems need detailed solutions: Harnessing multiple data types to inform genetic management in the wild. Evolutionary Applications 12, 280-291. 10.1111/eva.12715
  10. Farquharson, K.A. et al. (2019) A case for genetic parentage assignment in captive group housing. Conservation Genetics. 10.1007/s10592-019-01198-w
  11. Day, J. et al. (2019) MHC-associated mate choice under competitive conditions in captive versus wild Tasmanian devils. Behavioral Ecology. 10.1093/beheco/arz092
  12. Cope, H.R. et al. (2019) Contraceptive efficacy and dose-response effects of the gonadotrophin-releasing hormone (GnRH) agonist deslorelin in Tasmanian devils (<i>Sarcophilus harrisii</i>). Reproduction, Fertility and Development, -. https://doi.org/10.1071/RD18407
  13. Chong, R. et al. (2019) Fecal Viral Diversity of Captive and Wild Tasmanian Devils Characterized Using Virion-Enriched Metagenomics and Metatranscriptomics. Journal of Virology 93, e00205-00219. 10.1128/JVI.00205-19
  14. Chong, R. et al. (2019) Looking like the locals – gut microbiome changes post-release in an endangered species. Animal Microbiome 1, 1-10
  15. Cheng, Y. et al. (2019) Tasmanian devils with contagious cancer exhibit a constricted T-cell repertoire diversity. Communications Biology 2, 99. 10.1038/s42003-019-0342-5
  16. Brandies, P. et al. (2019) The value of reference genomes in the conservation of threatened species. Genes 10, 846
  17. Agbowuro, A.A. et al. (2019) Structure-activity analysis of peptidic Chlamydia HtrA inhibitors. Bioorganic & Medicinal Chemistry. 10.1016/j.bmc.2019.07.049
  1. Russell, T. et al. (2018) MHC diversity and female age underpin reproductive success in an Australian icon; the Tasmanian Devil. Scientific Reports 8, 4175. 10.1038/s41598-018-20934-9
  2. Pye, R. et al. (2018) Immunization strategies producing a humoral IgG immune response against devil facial tumor disease in the majority of Tasmanian devils destined for wild release. Frontiers in Immunology 9. 10.3389/fimmu.2018.00259
  3. Peel, E. and Belov, K. (2018) Lessons learnt from the Tasmanian devil facial tumour regarding immune function in cancer. Mammalian Genome 29, 731-738. 10.1007/s00335-018-9782-3
  4. Ogunniyi, A.D. et al. (2018) Bioluminescent murine models of bacterial sepsis and scald wound infections for antimicrobial efficacy testing. PLOS ONE 13, e0200195. 10.1371/journal.pone.0200195
  5. McLennan, E.A. et al. (2018) Pedigree reconstruction using molecular data reveals an early warning sign of gene diversity loss in an island population of Tasmanian devils (Sarcophilus harrisii). Conservation Genetics 19, 439-450. 10.1007/s10592-017-1017-8
  6. Madden, D. et al. (2018) Koala immunology and infectious diseases: How much can the koala bear? Developmental & Comparative Immunology 82, 177-185. https://doi.org/10.1016/j.dci.2018.01.017
  7. Johnson, R.N. et al. (2018) Adaptation and conservation insights from the koala genome. Nature Genetics 50, 1102-1111. 10.1038/s41588-018-0153-5
  8. Hogg, C.J. et al. (2018) Response to Britt et al. 2018 “The importance of non-academic co-authors in bridging the conservation genetics gap” Biological Conservation 218, 118–123. Biological Conservation 222, 287-288. https://doi.org/10.1016/j.biocon.2018.04.035
  9. Hogg, C.J. et al. (2018) Stopping the spin cycle: genetics and bio-banking as a tool for addressing the laundering of illegally caught wildlife as ‘captive-bred’. Conservation Genetics Resources 10, 237-246. 10.1007/s12686-017-0784-3
  10. Hivert, L. et al. (2018) High blood lead concentrations in captive Tasmanian devils (Sarcophilus harrisii): a threat to the conservation of the species? Australian Veterinary Journal 96, 442-449. 10.1111/avj.12753
  11. Grueber, C.E. et al. (2018) Intergenerational effects of nutrition on immunity: a systematic review and meta-analysis. Biological Reviews 93, 1108-1124. 10.1111/brv.12387
  12. Grueber, C.E. et al. (2018) Landscape-level field data reveal broad-scale effects of a fatal, transmissible cancer on population ecology of the Tasmanian devil. Mammalian Biology 91, 41-45. https://doi.org/10.1016/j.mambio.2018.03.011
  13. Gooley, R.M. et al. (2018) The effects of group versus intensive housing on the retention of genetic diversity in insurance populations. BMC Zoology 3, 2. 10.1186/s40850-017-0026-x
  14. Fox, S. et al. (2018) Devil women. Pacific Conservation Biology 24, 271-279. https://doi.org/10.1071/PC18021
  15. Fernandez-Rojo, M.A. et al. (2018) Gomesin peptides prevent proliferation and lead to the cell death of devil facial tumour disease cells. Cell Death Discovery 4, 19. 10.1038/s41420-018-0030-0
  16. Farquharson, K.A. et al. (2018) A meta-analysis of birth-origin effects on reproduction in diverse captive environments. Nature Communications 9, 1055. 10.1038/s41467-018-03500-9
  17. Farquharson, K.A. et al. (2018) Are any populations ‘safe’? Unexpected reproductive decline in a population of Tasmanian devils free of devil facial tumour disease. Wildlife Research 45, 31-37. https://doi.org/10.1071/WR16234
  18. Ewart, K.M. et al. (2018) A rapid multiplex PCR assay for presumptive species identification of rhinoceros horns and its implementation in Vietnam. PLOS ONE 13, e0198565. 10.1371/journal.pone.0198565
  19. Cope, H.R. et al. (2018) A role for selective contraception of individuals in conservation. Conservation Biology 32, 546-558. 10.1111/cobi.13042
  20. Cope, H.R. et al. (2018) Effects of deslorelin implants on reproduction and feeding behavior in Tasmanian devils (Sarcophilus harrisii) housed in free-range enclosures. Theriogenology 107, 134-141. https://doi.org/10.1016/j.theriogenology.2017.10.047
  21. Chong, R. et al. (2018) Characterisation of the faecal virome of captive and wild Tasmanian devils using virus-like particles metagenomics and meta-transcriptomics. bioRxiv, 443457. 10.1101/443457
  22. Cheng, Y. et al. (2018) Characterisation of MHC class I genes in the koala. Immunogenetics 70, 125-133. 10.1007/s00251-017-1018-2
  23. Byrne, M. et al. (2018) Women in conservation science making a difference. Pacific Conservation Biology 24, 209-214. 10.1071/PC18061
  24. Brandies, P.A. et al. (2018) Disentangling the mechanisms of mate choice in a captive koala population. PeerJ 6, e5438. 10.7717/peerj.5438
  1. Wright, B. et al. (2017) Variants in the host genome may inhibit tumour growth in devil facial tumours: evidence from genome-wide association. Scientific Reports 7, 423. 10.1038/s41598-017-00439-7
  2. Tovar, C. et al. (2017) Regression of devil facial tumour disease following immunotherapy in immunised Tasmanian devils. Scientific reports 7, 43827-43827. 10.1038/srep43827
  3. Peel, E. et al. (2017) Marsupial and monotreme cathelicidins display antimicrobialactivity, including against methicillin-resistant Staphylococcus. Microbiology (United Kingdom) 163, 1457-1465. 10.1099/mic.0.000536
  4. Peel, E. and Belov, K. (2017) Immune-endocrine interactions in marsupials and monotremes. General and Comparative Endocrinology 244, 178-185. https://doi.org/10.1016/j.ygcen.2017.01.026
  5. Lillie, M. et al. (2017) Variation in Major Histocompatibility Complex diversity in invasive cane toad populations. Wildlife Research 44, 565-572, 568
  6. Knafler, G.J. et al. (2017) Differential patterns of diversity at microsatellite, MHC, and TLR loci in bottlenecked South Island saddleback populations. New Zealand Journal of Ecology 41, 98-106
  7. Jones, E.A. et al. (2017) Characterization of the antimicrobial peptide family defensins in the Tasmanian devil (Sarcophilus harrisii), koala (Phascolarctos cinereus), and tammar wallaby (Macropus eugenii). Immunogenetics 69, 133-143. 10.1007/s00251-016-0959-1
  8. Hogg, C.J. et al. (2017) Metapopulation management of an Endangered species with limited genetic diversity in the presence of disease: the Tasmanian devil Sarcophilus harrisii. International Zoo Yearbook 51, 137-153. 10.1111/izy.12144
  9. Hogg, C.J. et al. (2017) “Devil Tools & Tech”: A Synergy of Conservation Research and Management Practice. Conservation Letters 10, 133-138. 10.1111/conl.12221
  10. Hobbs, M. et al. (2017) Long-read genome sequence assembly provides insight into ongoing retroviral invasion of the koala germline. Scientific Reports 7, 15838. 10.1038/s41598-017-16171-1
  11. Hendrawan, K. et al. (2017) The Regulation of Uterine Proinflammatory Gene Expression during Pregnancy in the Live-Bearing Lizard, Pseudemoia entrecasteauxii. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution 328, 334-346. 10.1002/jez.b.22733
  12. Grueber, C.E. et al. (2017) Reciprocal translocation of small numbers of inbred individuals rescues immunogenetic diversity. Molecular Ecology 26, 2660-2673. 10.1111/mec.14063
  13. Grueber, C.E. et al. (2017) Increasing generations in captivity is associated with increased vulnerability of Tasmanian devils to vehicle strike following release to the wild. Scientific Reports 7, 2161. 10.1038/s41598-017-02273-3
  14. Grueber, C.E. et al. (2017) Population demography and heterozygosity–fitness correlations in natural guppy populations: An examination using sexually selected fitness traits. Molecular Ecology 26, 4631-4643. 10.1111/mec.14243
  15. Grueber, C.E. (2017) Making the best of a bad situation: genetic rescue in the absence of an ideal source population. Animal Conservation 20, 14-15. 10.1111/acv.12337
  16. Griffith, O.W. et al. (2017) Comparative genomics of hormonal signaling in the chorioallantoic membrane of oviparous and viviparous amniotes. General and Comparative Endocrinology 244, 19-29. https://doi.org/10.1016/j.ygcen.2016.04.017
  17. Gooley, R. et al. (2017) No evidence of inbreeding depression in a Tasmanian devil insurance population despite significant variation in inbreeding. Scientific Reports 7, 1830. 10.1038/s41598-017-02000-y
  18. Farquharson, K.A. et al. (2017) Pedigree analysis reveals a generational decline in reproductive success of captive Tasmanian devil (Sarcophilus harrisii): implications for captive management of threatened species. Journal of Heredity 108, 488-495. 10.1093/jhered/esx030
  19. Cheng, Y. et al. (2017) Significant decline in anticancer immune capacity during puberty in the Tasmanian devil. Scientific reports 7, 44716-44716. 10.1038/srep44716
  20. Cheng, Y. and Belov, K. (2017) Antimicrobial protection of marsupial pouch young. Frontiers in Microbiology 8. 10.3389/fmicb.2017.00354
  21. Weiser, E.L. et al. (2016) Unexpected positive and negative effects of continuing inbreeding in one of the world’s most inbred wild animals. Evolution 70, 154-166. 10.1111/evo.12840
  22. Ujvari, B. et al. (2016) Transmissible cancers in an evolutionary context. BioEssays 38, S14-S23. 10.1002/bies.201670904
  23. Ujvari, B. et al. (2016) Immunoglubolin dynamics and cancer prevalence in Tasmanian devils (Sarcophilus harrisii). Scientific Reports 6, 25093. 10.1038/srep25093
  24. Senior, A.M. et al. (2016) Macronutritional consequences of food generalism in an invasive mammal, the wild boar. Mammalian Biology 81, 523-526. https://doi.org/10.1016/j.mambio.2016.07.001
  25. Senior, A.M. et al. (2016) Heterogeneity in ecological and evolutionary meta-analyses: its magnitude and implications. Ecology 97, 3293-3299. 10.1002/ecy.1591
  26. Peel, E. et al. (2016) Cathelicidins in the Tasmanian devil (Sarcophilus harrisii). Scientific Reports 6, 35019. 10.1038/srep35019
  27. Ng, J.H.J. et al. (2016) Evolution and comparative analysis of the bat MHC-I region. Scientific Reports 6, 21256. 10.1038/srep21256
  28. Newman, S.J. et al. (2016) Reproductive success is predicted by social dynamics and kinship in managed animal populations. F1000Research 5. 10.12688/f1000research.8713.1
  29. Morris, K.M. et al. (2016) Characterisation of the immune compounds in koala milk using a combined transcriptomic and proteomic approach. Scientific Reports 6. 10.1038/srep35011
  30. Lillie, M. et al. (2016) Molecular characterization of MHC class II in the Australian invasive cane toad reveals multiple splice variants. Immunogenetics 68, 449-460. 10.1007/s00251-016-0919-9
  31. Knafler, G.J. et al. (2016) Comparison of beak and feather disease virus prevalence and immunity-associated genetic diversity over time in an island population of red-crowned parakeets. Archives of Virology 161, 811-820. 10.1007/s00705-015-2717-3
  32. Hewavisenti, R.V. et al. (2016) The identification of immune genes in the milk transcriptome of the Tasmanian devil (Sarcophilus harrisii). PeerJ 2016. 10.7717/peerj.1569
  33. Griffith, O.W. et al. (2016) Allelic expression of mammalian imprinted genes in a matrotrophic lizard, Pseudemoia entrecasteauxii. Development Genes and Evolution 226, 79-85. 10.1007/s00427-016-0531-x
  34. Griffith, O.W. et al. (2016) Reptile Pregnancy Is Underpinned by Complex Changes in Uterine Gene Expression: A Comparative Analysis of the Uterine Transcriptome in Viviparous and Oviparous Lizards. Genome Biol Evol 8, 3226-3239. 10.1093/gbe/evw229
  35. Brennan, A. et al. (2016) Comparison of genotypes of Toxoplasma gondii in domestic cats from Australia with latent infection or clinical toxoplasmosis. Veterinary Parasitology 228, 13-16. https://doi.org/10.1016/j.vetpar.2016.06.008
  36. Wright, B. et al. (2015) Development of a SNP-based assay for measuring genetic diversity in the Tasmanian devil insurance population. BMC Genomics 16. 10.1186/s12864-015-2020-4
  37. Wheelhouse, J.L. et al. (2015) Congenital vestibular disease in captive Sumatran tigers (Panthera tigris ssp. sumatrae) in Australasia. The Veterinary Journal 206, 178-182. https://doi.org/10.1016/j.tvjl.2015.09.005
  38. Ujvari, B. and Belov, K. (2015) Characterization of antibody V segment diversity in the Tasmanian devil (Sarcophilus harrisii). Veterinary Immunology and Immunopathology 167, 156-165. https://doi.org/10.1016/j.vetimm.2015.08.001
  39. Morris, K.M. et al. (2015) Lack of genetic diversity across diverse immune genes in an endangered mammal, the Tasmanian devil (Sarcophilus harrisii). Molecular Ecology 24, 3860-3872. 10.1111/mec.13291
  40. Morris, K.M. et al. (2015) Identification, characterisation and expression analysis of natural killer receptor genes in Chlamydia pecorum infected koalas (Phascolarctos cinereus). BMC Genomics 16. 10.1186/s12864-015-2035-x
  41. Morris, K.M. et al. (2015) Identification and analysis of divergent immune gene families within the Tasmanian devil genome. BMC Genomics 16, 1017. 10.1186/s12864-015-2206-9
  42. Lillie, M. et al. (2015) Selection on MHC class II supertypes in the New Zealand endemic Hochstetter’s frog Phylogenetics and phylogeography. BMC Evolutionary Biology 15. 10.1186/s12862-015-0342-0
  43. Koepfli, K.-P. et al. (2015) The Genome 10K Project: a way forward. Annu Rev Anim Biosci 3, 57-111. 10.1146/annurev-animal-090414-014900
  44. Hogg, C.J. et al. (2015) Influence of genetic provenance and birth origin on productivity of the Tasmanian devil insurance population. Conservation Genetics 16, 1465-1473. 10.1007/s10592-015-0754-9
  45. Grueber, C.E. et al. (2015) Genomic insights into a contagious cancer in Tasmanian devils. Trends in Genetics 31, 528-535. https://doi.org/10.1016/j.tig.2015.05.001
  46. Grueber, C.E. et al. (2015) Toll-like receptor diversity in 10 threatened bird species: relationship with microsatellite heterozygosity. Conservation Genetics 16, 595-611. 10.1007/s10592-014-0685-x
  47. Grueber, C.E. et al. (2015) Impacts of early viability selection on management of inbreeding and genetic diversity in conservation. Molecular Ecology 24, 1645-1653. 10.1111/mec.13141
  48. Grueber, C.E. (2015) Comparative genomics for biodiversity conservation. Computational and Structural Biotechnology Journal 13, 370-375. https://doi.org/10.1016/j.csbj.2015.05.003
  49. Cui, J. et al. (2015) SNP marker discovery in koala TLR genes. PLoS ONE 10. 10.1371/journal.pone.0121068
  50. Cui, J. et al. (2015) Diversity in the Toll-like receptor genes of the Tasmanian devil (Sarcophilus harrisii). Immunogenetics 67, 195-201. 10.1007/s00251-014-0823-0
  51. Cheng, Y. et al. (2015) Evolution of the avian β-defensin and cathelicidin genes. BMC Evolutionary Biology 15. 10.1186/s12862-015-0465-3
  52. Cheng, Y. et al. (2015) The Tasmanian devil microbiome-implications for conservation and management. Microbiome 3, 76. 10.1186/s40168-015-0143-0
  53. Cassey, P. and Hogg, C.J. (2015) Escaping captivity: The biological invasion risk from vertebrate species in zoos. Biological Conservation 181, 18-26. https://doi.org/10.1016/j.biocon.2014.10.023
  54. Barrs, V.R. et al. (2015) Detection of Aspergillus-specific antibodies by agar gel double immunodiffusion and IgG ELISA in feline upper respiratory tract aspergillosis. The Veterinary Journal 203, 285-289. https://doi.org/10.1016/j.tvjl.2014.12.020
  55. Whittington, C.M. and Belov, K. (2014) Tracing monotreme venom evolution in the genomics era. Toxins (Basel) 6, 1260-1273. 10.3390/toxins6041260
  56. Ujvari, B. et al. (2014) Anthropogenic selection enhances cancer evolution in Tasmanian devil tumours. Evolutionary Applications 7, 260-265. 10.1111/eva.12117
  57. Morris, K.M. et al. (2014) Development of MHC-linked microsatellite markers in the domestic cat and their use to evaluate MHC diversity in domestic cats, cheetahs, and gir lions. Journal of Heredity 105, 493-505. 10.1093/jhered/esu017
  58. Morris, K. et al. (2014) The koala immunological toolkit: Sequence identification and comparison of key markers of the koala (Phascolarctos cinereus) immune response. Australian Journal of Zoology 62, 195-199. 10.1071/ZO13105
  59. Lillie, M. et al. (2014) Characterisation of Major Histocompatibility Complex Class I in the Australian Cane Toad, Rhinella marina. PLOS ONE 9, e102824. 10.1371/journal.pone.0102824
  60. Howson, L.J. et al. (2014) Identification of dendritic cells, B cell and T cell subsets in Tasmanian devil lymphoid tissue; evidence for poor immune cell infiltration into devil facial tumors. The Anatomical Record 297, 925-938. 10.1002/ar.22904
  61. Grueber, C.E. et al. (2014) Episodic Positive Selection in the Evolution of Avian Toll-Like Receptor Innate Immunity Genes. PLOS ONE 9, e89632. 10.1371/journal.pone.0089632
  62. Cheng, Y. and Belov, K. (2014) Characterisation of non-classical MHC class I genes in the Tasmanian devil (Sarcophilus harrisii). Immunogenetics 66, 727-735. 10.1007/s00251-014-0804-3
  63. Wong, E.S.W. et al. (2013) Echidna Venom Gland Transcriptome Provides Insights into the Evolution of Monotreme Venom. PLOS ONE 8, e79092. 10.1371/journal.pone.0079092
  64. van der Kraan, L.E. et al. (2013) Identification of natural killer cell receptor genes in the genome of the marsupial Tasmanian devil (Sarcophilus harrisii). Immunogenetics 65, 25-35. 10.1007/s00251-012-0643-z
  65. Ujvari, B. et al. (2013) Devil Facial Tumor Disease, A Potential Model of the Cancer Stem-Cell Process? GSTF Journal of Veterinary Science 1. 10.5176/2382-5685_VETSCI13.24
  66. Ujvari, B. et al. (2013) Evolution of a contagious cancer: epigenetic variation in Devil Facial Tumour Disease. Proc Biol Sci 280, 20121720-20121720. 10.1098/rspb.2012.1720
  67. Siddle, H.V. et al. (2013) Reversible epigenetic down-regulation of MHC molecules by devil facial tumour disease illustrates immune escape by a contagious cancer. Proceedings of the National Academy of Sciences of the United States of America 110, 5103-5108. 10.1073/pnas.1219920110
  68. Morris, K. and Belov, K. (2013) Does the devil facial tumour produce immunosuppressive cytokines as an immune evasion strategy? Veterinary Immunology and Immunopathology 153, 159-164. https://doi.org/10.1016/j.vetimm.2013.02.008
  69. Morris, K. et al. (2013) Low major histocompatibility complex diversity in the Tasmanian devil predates European settlement and may explain susceptibility to disease epidemics. Biology Letters 9, 20120900. doi:10.1098/rsbl.2012.0900
  70. Lau, Q. et al. (2013) Characterisation of four major histocompatibility complex class II genes of the koala (Phascolarctos cinereus). Immunogenetics 65, 37-46. 10.1007/s00251-012-0658-5
  71. Hogg, C.J. et al. (2013) Species management benchmarking: Outcomes over outputs in a changing operating environment. Zoo Biology 32, 230-237. 10.1002/zoo.21039
  72. Hogg, C.J. (2013) Preserving Australian native fauna: zoo-based breeding programs as part of a more unified strategic approach. Australian Journal of Zoology 61, 101-108, 108
  73. Herbert, C.A. and Belov, K. (2013) Desmond Wishart Cooper: a life in science. Australian Journal of Zoology 61, 1-3, 3
  74. Grueber, C.E. et al. (2013) Genetic drift outweighs natural selection at toll-like receptor (TLR) immunity loci in a re-introduced population of a threatened species. Molecular Ecology 22, 4470-4482. 10.1111/mec.12404
  75. Griffith, O.W. et al. (2013) Placental lipoprotein lipase (LPL) gene expression in a placentotrophic lizard, Pseudemoia entrecasteauxii. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution 320, 465-470. 10.1002/jez.b.22526
  76. Frankham, G.J. et al. (2013) Characterisation of 16 microsatellite markers via 454 sequencing, to aid ex-situ conservation of the scimitar-horned oryx, Oryx dammah. Conservation Genetics Resources 5, 795-797. 10.1007/s12686-013-9910-z
  77. Belov, K. et al. (2013) Marsupial immunology bounding ahead. Australian Journal of Zoology 61, 24-40, 17
  78. Young, L. et al. (2012) Molecular identification of interleukin-2 in the lymphoid tissues of the common brushtail possum, Trichosurus vulpecula. Developmental and comparative immunology 36, 236-240. 10.1016/j.dci.2011.05.010
  79. Wong, E.S.W. et al. (2012) A limited role for gene duplications in the evolution of platypus venom. Mol Biol Evol 29, 167-177. 10.1093/molbev/msr180
  80. Wong, E.S.W. et al. (2012) Proteomics and deep sequencing comparison of seasonally active venom glands in the platypus reveals novel venom peptides and distinct expression profiles. Molecular and Cellular Proteomics 11, 1354-1364. 10.1074/mcp.M112.017491
  81. Wong, E.S.W. and Belov, K. (2012) Venom evolution through gene duplications. Gene 496, 1-7. https://doi.org/10.1016/j.gene.2012.01.009
  82. Wong, E. et al. (2012) The Evolutionary Origins of Monotreme Crural Glands. Toxicon 60, 122-123. 10.1016/j.toxicon.2012.04.057
  83. Ujvari, B. et al. (2012) Telomere Dynamics and Homeostasis in a Transmissible Cancer. PLoS ONE 7. 10.1371/journal.pone.0044085
  84. Pearse, A.-M. et al. (2012) Evolution in a transmissible cancer: A study of the chromosomal changes in devil facial tumor (DFT) as it spreads through the wild Tasmanian devil population. Cancer genetics 205, 101-112. 10.1016/j.cancergen.2011.12.001
  85. Lillie, M. et al. (2012) Diversity at the Major Histocompatibility Complex Class II in the Platypus, Ornithorhynchus anatinus. Journal of Heredity 103, 467-478. 10.1093/jhered/ess012
  86. Lane, A. et al. (2012) New insights into the role of MHC diversity in devil facial tumour disease. PLoS ONE 7. 10.1371/journal.pone.0036955
  87. Jobbins, S.E. et al. (2012) Diversity of MHC class II DAB 1 in the koala (Phascolarctos cinereus). Australian Journal of Zoology 60, 1-9. 10.1071/ZO12013
  88. Jobbins, S. et al. (2012) Diversity of MHC class II DAB1 in the koala (Phascolarctos cinereus). Australian Journal of Zoology 60, 1-9. 10.1071/ZO12013
  89. Hamede, R. et al. (2012) Reduced Effect of Tasmanian Devil Facial Tumor Disease at the Disease Front. Conservation Biology 26, 124-134. 10.1111/j.1523-1739.2011.01747.x
  90. Deakin, J.E. et al. (2012) Genomic Restructuring in the Tasmanian Devil Facial Tumour: Chromosome Painting and Gene Mapping Provide Clues to Evolution of a Transmissible Tumour. PLOS Genetics 8, e1002483. 10.1371/journal.pgen.1002483
  91. Cheng, Y. et al. (2012) Antigen-presenting genes and genomic copy number variations in the Tasmanian devil MHC. BMC Genomics 13, 87. 10.1186/1471-2164-13-87
  92. Cheng, Y. et al. (2012) Low MHC class II diversity in the Tasmanian devil (Sarcophilus harrisii). Immunogenetics 64, 525-533. 10.1007/s00251-012-0614-4
  93. Cheng, Y. and Belov, K. (2012) Isolation and characterisation of 11 MHC-linked microsatellite loci in the Tasmanian devil (Sarcophilus harrisii). Conservation Genetics Resources 4, 463-465. 10.1007/s12686-011-9575-4
  94. Belov, K. (2012) Contagious cancer: Lessons from the devil and the dog. BioEssays 34, 285-292. 10.1002/bies.201100161
  95. Wong, E.S.W. et al. (2011) Transcriptomic analysis supports similar functional roles for the two thymuses of the tammar wallaby. BMC Genomics 12, 420. 10.1186/1471-2164-12-420
  96. Wong, E.S.W. et al. (2011) Immunome database for marsupials and monotremes. BMC Immunology 12, 48. 10.1186/1471-2172-12-48
  97. Wong, E.S.W. et al. (2011) Genomic Identification of Chemokines and Cytokines in Opossum. Journal of Interferon & Cytokine Research 31, 317-330. 10.1089/jir.2010.0045
  98. Wang, J. et al. (2011) Ancient Antimicrobial Peptides Kill Antibiotic-Resistant Pathogens: Australian Mammals Provide New Options. PLOS ONE 6, e24030. 10.1371/journal.pone.0024030
  99. Wang, C. et al. (2011) A first-generation integrated tammar wallaby map and its use in creating a tammar wallaby first-generation virtual genome map. BMC Genomics 12, 422. 10.1186/1471-2164-12-422
  100. Ujvari, B. and Belov, K. (2011) Major Histocompatibility Complex (MHC) markers in conservation biology. Int J Mol Sci 12, 5168-5186. 10.3390/ijms12085168
  101. Tripovich, J.S. et al. (2011) Toneburst-evoked auditory brainstem response in a leopard seal, Hydrurga leptonyx. The Journal of the Acoustical Society of America 129, 483-487. 10.1121/1.3514370
  102. Siddle, H.V. et al. (2011) The tammar wallaby major histocompatibility complex shows evidence of past genomic instability. BMC Genomics 12. 10.1186/1471-2164-12-421
  103. Renfree, M.B. et al. (2011) Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development. Genome Biol 12, R81-R81. 10.1186/gb-2011-12-8-r81
  104. Kreiss, A. et al. (2011) Allorecognition in the Tasmanian Devil (Sarcophilus harrisii), an Endangered Marsupial Species with Limited Genetic Diversity. PLOS ONE 6, e22402. 10.1371/journal.pone.0022402
  105. Belov, K. (2011) The role of the Major Histocompatibility Complex in the spread of contagious cancers. Mammalian Genome 22, 83-90. 10.1007/s00335-010-9294-2
  106. Whittington, C.M. et al. (2010) Novel venom gene discovery in the platypus. Genome Biol 11, R95. 10.1186/gb-2010-11-9-r95
  107. Smith, S. et al. (2010) MHC screening for marsupial conservation: extremely low levels of class II diversity indicate population vulnerability for an endangered Australian marsupial. Conservation Genetics 11, 269-278. 10.1007/s10592-009-0029-4
  108. Siddle, H.V. et al. (2010) MHC gene copy number variation in Tasmanian devils: implications for the spread of a contagious cancer. Proceedings of the Royal Society B: Biological Sciences 277, 2001-2006. doi:10.1098/rspb.2009.2362
  109. Sanderson, C.E. et al. (2010) Physical mapping of immune genes in the tammar wallaby (Macropus eugenii). Cytogenetic and Genome Research 127, 21-25. 10.1159/000260372
  110. Murphy, B.F. et al. (2010) Evolution of viviparity and uterine angiogenesis: vascular endothelial growth factor (VEGF) in oviparous and viviparous skinks. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution 314B, 148-156. 10.1002/jez.b.21317
  111. Koh, J.M.S. et al. (2010) L-to-D-peptide isomerase in male echidna venom. Australian Journal of Zoology 58, 284-288. 10.1071/ZO10045
  112. Zhao, Y. et al. (2009) Ornithorhynchus anatinus (Platypus) links the evolution of immunoglobulin genes in eutherian mammals and nonmammalian tetrapods. Journal of Immunology 183, 3285-3293. 10.4049/jimmunol.0900469
  113. Yuasa, H.J. et al. (2009) Characterization and evolution of vertebrate indoleamine 2, 3-dioxygenases: IDOs from monotremes and marsupials. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 153, 137-144. https://doi.org/10.1016/j.cbpb.2009.02.002
  114. Wong, E.S.W. et al. (2009) Identification of natural killer cell receptor clusters in the platypus genome reveals an expansion of C-type lectin genes. Immunogenetics 61, 565-579. 10.1007/s00251-009-0386-7
  115. Wong, E.S.W. et al. (2009) Hatching time for monotreme immunology. Australian Journal of Zoology 57, 185-198. 10.1071/ZO09042
  116. Whittington, C.M. et al. (2009) No evidence of expression of two classes of natural antibiotics (cathelicidins and defensins) in a sample of platypus milk. Australian Journal of Zoology 57, 211-217. 10.1071/ZO09047
  117. Whittington, C.M. and Belov, K. (2009) Platypus venom genes expressed in non-venom tissues. Australian Journal of Zoology 57, 199-202. 10.1071/ZO09046
  118. Whittington, C. et al. (2009) Understanding and utilising mammalian venom via a platypus venom transcriptome. Journal of Proteomics 72, 155-164. 10.1016/j.jprot.2008.12.004
  119. Vernersson, M. et al. (2009) Cloning and structural analysis of two highly divergent IgA isotypes, IgA1 and IgA2 from the duck billed platypus, Ornithorhynchus anatinus. Molecular immunology 47, 785-791. 10.1016/j.molimm.2009.10.007
  120. Siddle, H.V. et al. (2009) MHC-linked and un-linked class I genes in the wallaby. BMC Genomics 10, 310. 10.1186/1471-2164-10-310
  121. Hogg, C.J. et al. (2009) Determination of steroid hormones in whale blow: It is possible. Marine Mammal Science 25, 605-618. 10.1111/j.1748-7692.2008.00277.x
  122. Cheng, Y. et al. (2009) Isolation and characterization of 10 MHC Class I-associated microsatellite loci in tammar wallaby (Macropus eugenii). Molecular Ecology Resources 9, 346-349. 10.1111/j.1755-0998.2008.02401.x
  123. Cheng, Y. et al. (2009) High levels of genetic variation at MHC class II DBB loci in the tammar wallaby (Macropus eugenii). Immunogenetics 61, 111-118. 10.1007/s00251-008-0347-6
  124. Cao, H. et al. (2009) Comparative genomics indicates the mammalian CD33rSiglec locus evolved by an ancient large-scale inverse duplication and suggests all Siglecs share a common ancestral region. Immunogenetics 61, 401-417. 10.1007/s00251-009-0372-0
  125. Whittington, C.M. et al. (2008) Expression patterns of platypus defensin and related venom genes across a range of tissue types reveal the possibility of broader functions for OvDLPs than previously suspected. Toxicon 52, 559-565. https://doi.org/10.1016/j.toxicon.2008.07.002
  126. Whittington, C.M. et al. (2008) Defensins and the convergent evolution of platypus and reptile venom genes. Genome Res 18, 986-994. 10.1101/gr.7149808
  127. Warren, W.C. et al. (2008) Genome analysis of the platypus reveals unique signatures of evolution. Nature 453, 175-183. 10.1038/nature06936
  128. Woods, G.M. et al. (2007) The immune response of the Tasmanian devil (Sarcophilus harrisii) and devil facial tumour disease. EcoHealth 4, 338-345. 10.1007/s10393-007-0117-1
  129. Whittington, C. and Belov, K. (2007) Platypus Venom: a Review. Australian Mammalogy 29. 10.1071/AM07006
  130. Torres, A.M. et al. (2007) Characterization and isolation of L-to-D-amino-acid-residue isomerase from platypus venom. Amino Acids 32, 63-68. 10.1007/s00726-006-0346-6
  131. Siddle, H.V. et al. (2007) Characterization of major histocompatibility complex class I and class II genes from the Tasmanian devil (Sarcophilus harrisii). Immunogenetics 59, 753-760. 10.1007/s00251-007-0238-2
  132. Siddle, H.V. et al. (2007) Transmission of a fatal clonal tumor by biting occurs due to depleted MHC diversity in a threatened carnivorous marsupial. Proceedings of the National Academy of Sciences 104, 16221. 10.1073/pnas.0704580104
  133. Pyecroft, S.B. et al. (2007) Towards a case definition for devil facial tumour disease: What is it? EcoHealth 4, 346-351. 10.1007/s10393-007-0126-0
  134. Mikkelsen, T.S. et al. (2007) Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences. Nature 447, 167. 10.1038/nature05805
  135. https://www.nature.com/articles/nature05805#supplementary-information
  136. Deakin, J.E. et al. (2007) Class I genes have split from the MHC in the tammar wallaby. Cytogenetic and Genome Research 116, 205-211. 10.1159/000098188
  137. Belov, K. et al. (2007) Characterization of the opossum immune genome provides insights into the evolution of the mammalian immune system. Genome Res 17, 982-991. 10.1101/gr.6121807
  138. Wong, E.S. et al. (2006) In silico identification of opossum cytokine genes suggests the complexity of the marsupial immune system rivals that of eutherian mammals. Immunome Res 2, 4-4. 10.1186/1745-7580-2-4
  139. Torres, A.M. et al. (2006) Mammalian l-to-d-amino-acid-residue isomerase from platypus venom. FEBS Letters 580, 1587-1591. https://doi.org/10.1016/j.febslet.2006.01.089
  140. Siddle, H.V. et al. (2006) Isolation of major histocompatibility complex Class I genes from the tammar wallaby (Macropus eugenii). Immunogenetics 58, 487-493. 10.1007/s00251-006-0107-4
  141. Miller, H.C. et al. (2006) MHC Class I Genes in the Tuatara (Sphenodon spp.): Evolution of the MHC in an Ancient Reptilian Order. Mol Biol Evol 23, 949-956. 10.1093/molbev/msj099
  142. Hogg, C. et al. (2006) Reproductive hormones are unstable in some non-invasive samples. Journal of Experimental Zoology 305A (Part A – Comparative Experimental Biology ), 133-133
  143. Deakin, J.E. et al. (2006) Evolution and comparative analysis of the MHC Class III inflammatory region. BMC Genomics 7. 10.1186/1471-2164-7-281
  144. Deakin, J.E. et al. (2006) Evolution and comparative analysis of the MHC Class III inflammatory region. BMC Genomics 7, 281. 10.1186/1471-2164-7-281
  145. Constable, S. et al. (2006) Urinary cortisol sampling: A non-invasive technique for examining cortisol concentrations in the Weddell seal, Leptonychotes weddellii. Zoo Biology 25, 137-144. 10.1002/zoo.20088
  146. Belov, K. et al. (2006) Reconstructing an ancestral mammalian immune supercomplex from a marsupial major histocompatibility complex. PLoS Biology 4, 0317-0328. 10.1371/journal.pbio.0040046
  147. Rogers, T.L. et al. (2005) Spatial movement of adult leopard seals (Hydrurga leptonyx) in Prydz Bay, Eastern Antarctica. Polar Biology 28, 456-463. 10.1007/s00300-004-0703-4
  148. Miller, H.C. et al. (2005) Characterization of MHC class II genes from an ancient reptile lineage, Sphenodon (tuatara). Immunogenetics 57, 883-891. 10.1007/s00251-005-0055-4
  149. Hogg, C.J. et al. (2005) Determination of testosterone in saliva and blow of bottlenose dolphins (Tursiops truncatus) using liquid chromatography–mass spectrometry. Journal of Chromatography B 814, 339-346. https://doi.org/10.1016/j.jchromb.2004.10.058
  150. Deakin, J.E. et al. (2005) High levels of variability in immune response using antigens from two reproductive proteins in brushtail possums. Wildlife Research 32, 1-6. 10.1071/WR03107
  151. Deakin, J. et al. (2005) Variation in Level of Immune Response Raises Questions About the Feasibility of Using Immunological Methods to Manage New Zealand Brushtail Possums. Wildlife Research 32, 1-6
  152. Baker, M.L. et al. (2005) Unusually similar patterns of antibody V segment diversity in distantly related marsupials. Journal of Immunology 174, 5665-5671. 10.4049/jimmunol.174.9.5665
  153. Browning, T.L. et al. (2004) Molecular cloning and characterization of the polymorphic MHC class II DBB from the tammar wallaby (Macropus eugenii). Immunogenetics 55, 791-795. 10.1007/s00251-004-0644-7
  154. Belov, K. et al. (2004) Isolation of monotreme T-cell receptor α and β chains. Immunogenetics 56, 164-169. 10.1007/s00251-004-0679-9
  155. Belov, K. et al. (2004) Marsupial MHC class II β genes are not orthologous to the eutherian β gene families. Journal of Heredity 95, 338-345. 10.1093/jhered/esh049
  156. Belov, K. and Hellman, L. (2004) Immunoglobulin genetics of Ornithorhynchus anatinus (platypus) and Tachyglossus aculeatus (short-beaked echidna). Comparative biochemistry and physiology. Part A, Molecular & integrative physiology 136, 811-819. 10.1016/S1095-6433(03)00165-X
  157. Belov, K. et al. (2003) Evolution of the major histocompatibility complex: Isolation of class II β cDNAs from two monotremes, the platypus and the short-beaked echidna. Immunogenetics 55, 402-411. 10.1007/s00251-003-0598-1
  158. Belov, K. and Hellman, L. (2003) Platypus immunoglobulin m & the divergence of the two extant Monotreme lineages. Australian Mammalogy 25, 87-94
  159. Rawson, R.R. et al. (2002) Characterisation of antisera to recombinant IgA of the common brushtail possum (Trichosurus vulpecula). Veterinary Immunology and Immunopathology 88, 89-95. 10.1016/S0165-2427(02)00126-5
  160. Belov, K. et al. (2002) Echidna IgA supports mammalian unity and traditional Therian relationship. Mammalian Genome 13, 656-663. 10.1007/s00335-002-3004-7
  161. Belov, K. et al. (2002) Ontogeny of immunoglobulin expression in the brushtail possum (Trichosurus vulpecula). Developmental and Comparative Immunology 26, 599-602. 10.1016/S0145-305X(02)00015-0
  162. Belov, K. et al. (2002) Characterization of immunoglobulin gamma 1 from a monotreme, Tachyglossus aculeatus. Immunogenetics 53, 1065-1071. 10.1007/s00251-002-0432-1
  163. Belov, K. et al. (2002) Characterisation of echidna IgM provides insights into the time of divergence of extant mammals. Developmental & Comparative Immunology 26, 831-839. https://doi.org/10.1016/S0145-305X(02)00030-7
  164. Belov, K. et al. (2002) Molecular cloning of four lambda light chain cDNAs from the Australian brushtail possum Trichosurus vulpecula. European Journal of Immunogenetics 29, 95-99. 10.1046/j.1365-2370.2002.00286.x
  165. Lam, M.K.P. et al. (2001) An MHC class I gene in the Australian brushtail possum (Trichosurus vulpecula). Immunogenetics 53, 430-433. 10.1007/s002510100336
  166. Lam, M.K.P. et al. (2001) Cloning of the MHC class II DRB cDNA from the brushtail possum (Trichosurus vulpecula). Immunology Letters 76, 31-36. https://doi.org/10.1016/S0165-2478(00)00314-X
  167. Lam, M.K.-P. et al. (2001) An MHC class I gene in the Australian brushtail possum (Trichosurus vulpecula). Immunogenetics 53, 430-433. 10.1007/s002510100336
  168. Belov, K. et al. (2001) Characterisation of the κ light chain of the brushtail possum (Trichosurus vulpecula). Veterinary immunology and immunopathology 78, 317-324. 10.1016/S0165-2427(01)00239-2
  169. Miller, R.D. and Belov, K. (2000) Immunoglobulin genetics of marsupials. Developmental & Comparative Immunology 24, 485-490. https://doi.org/10.1016/S0145-305X(00)00011-2
  170. Belov, K. et al. (2000) Molecular cloning of the brushtail possum (Trichosurus vulpecula) immunglobulin E heavy chain constant region. Molecular immunology 36, 1255-1261. 10.1016/S0161-5890(99)00097-8
  171. Belov, K. et al. (1999) Isolation and comparison of the IgM heavy chain constant regions from Australian (Trichosurus vulpecula) and American (Monodelphis domestica) marsupials. Developmental & Comparative Immunology 23, 649-656. https://doi.org/10.1016/S0145-305X(99)00041-5
  172. Belov, K. et al. (1999) Molecular cloning of the brushtail possum (Trichosurus vulpecula) immunglobulin E heavy chain constant region. Molecular Immunology 36, 1255-1261. 10.1016/S0161-5890(99)00097-8
  173. Belov, K. et al. (1999) Cloning and characterisation of the Trichosurus vulpecula heavy chain constant regions of IgG, IgM, IgA and IgE. Advances in the biological control of possums 56, 47-49.
  174. Belov, K. et al. (1999) Isolation and sequence of a cDNA coding for the heavy chain constant region of IgG from the Australian brushtail possum, Trichosurus vulpecula. Molecular Immunology 36, 535-541. https://doi.org/10.1016/S0161-5890(99)00064-4
  175. Belov, K. et al. (1999) Short Communication: Cloning of the red kangaroo (Macropus rufus) follicle stimulating hormone beta subunit. Reproduction, Fertility and Development 10, 289-292. https://doi.org/10.1071/R98067
  176. Belov, K. et al. (1998) Erratum to ‘Molecular cloning of the cDNA encoding the constant region of the immunoglobulin A heavy chain (Cα from a marsupial: Trichosurus vulpecula (common brushtail possum)’ (Immunology letters (1998) 60 (165- 170)): PII: 0165247897001454. Immunology Letters 63, 175-176. 10.1016/S0165-2478(98)00093-5
  177. Belov, K. et al. (1998) Cloning of the red kangaroo (Macropus rufus) follicle stimulating hormone beta subunit. Reproduction, Fertility and Development 10, 289-291
  178. Belov, K. et al. (1998) Molecular cloning of the cDNA encoding the constant region of the immunoglobulin A heavy chain (Cα) from a marsupial: Trichosurus vulpecula (common brushtail possum). Immunology letters 60, 165-170. 10.1016/S0165-2478(97)00145-4