post

Making it through the final stretch of a PhD in conservation genomics and bioinformatics

by Holly Nelson (PhD Student)

Entering the final stage of a PhD is both a marathon and a sprint. After a quick 3-4 years of terminal windows, countless hours coding, latex gloves, tweaking plots to the perfect shade of maroon (#B03060), and obsessing over a turtle species that lives a world away, the world could be ending, and honestly, I wouldn’t even know.

One surprising obsession? Table spacing. Somehow, this has become the hill I’m willing to die on. Not to mention after three and a half years into postgrad education, I still don’t know whether it should be a comma or a semicolon. Who knew this was the pinnacle of academic thought? Shout-out to my colleagues who don’t blink when I send them scripts named things like “goNe_analysis__fix6_final_FINAL_v10.pbs” (you know who you are), and to my long-suffering supervisors who’ve received my manuscript drafts entitled “Manuscript_turtle_final_DEFSFinal4_v12.docx.” And Andrea—my fellow PhDer-in-crime who has joined me on the adventure. There’s something comforting in having a fellow office mate who reaches a delusion level just as unhinged as yours.

Honestly, perspective is nearly impossible when your days blur together into one big troubleshooting session, often caused by a stray space somewhere in a 94-line code. But at the end of the day the completion of a PhD is less about perfection or about how many pages are in pdf document you’ve spent years creating, and more about progress. My folders and directories may look like a chaotic labyrinth, but hey, they’re a testament to something resembling progress—90% of it’s stuff that would’ve looked like rocket science to me a couple of years ago. It’s about stepping back, handing in, disappearing, and leaving the pandora’s box of questions you opened during your thesis for the poor Honours student.

To anyone on the journey, hang in there. Or don’t, drop out and open a bakery if you feel like it. Either way, you’re not alone in those late-night bursts of productivity, never ending imposter syndrome, praying that the laptop you’ve run into the ground turns on every morning, or that compulsive need to move the plot legend just 0.5mm more to the left.

You’re the world expert in whatever obscure and niche little thing it is you do, even if no one, including you, fully understands it. Hold onto the fact that your work probably means something, and if it doesn’t, well, at least it’s given you something to do for the last few years.

As my daily reminder sticky-note says “it’s not that serious”.

Bilby release

Holly Nelson (PhD Student) is working on how we can use genomics to revolutionise threatened species management. From genome assembly to downstream analyses using whole-genome data, Holly is using her work to answer genetic questions on the Bellinger River Snapping Turtle, Koala, and other threatened species. Her work, in partnership with the NSW Governments Saving Our Species program, aims to create more robust conservation strategies that can be developed and applied together with wildlife managers.

post

From Cardiff to Maria Island

by Matt Spadaro

When I first arrived in Sydney from the UK, I had no idea which project I would be doing. I found out on my first day that I’d be making a stud book for the Maria Island devils- a place and a species that I was, admittedly, totally ignorant towards. Upon learning more about the two, my interest only continued to grow; when Carolyn asked me to go to the island which I had been learning so much about, I jumped at the opportunity.

Once I arrived on Maria, I realised just how special of a place it is. 10 minutes into my time, I had already seen my first Wombat and I had to take a picture despite it being dark- I had no idea that I would experience hundreds of wombat sightings over the course of the week (see below for better photos than my first).

After, we got everything sorted and began baiting the traps in the dark for the next day (for more information on how to catch a devil, see Elle’s post titled “How to catch a Tasmanian devil”).

In the morning, the processing of the devils commenced. Weight, teeth measurements, head size, pouch state (if the individual was female), number of parasites and general body condition were all taken during this processing of recaptured animals. New animals had all the preceding measurements taken with the additional processes of taking of an ear biopsy, inserting a microchip, and giving the devil a name.

As this process is quite an extensive experience for the devils, I was expecting their demeanour to be far from calm, especially when considering their given name of “devil”. Therefore, I was quite surprised when all of the first devils that we caught and processed were seemingly calm (although in retrospect many of them were likely terrified). This wasn’t the case for all devils though, with a few showing jaw popping behaviours and the low growling noises which they are well known for. Despite these exceptions, the vast majority of the devils we caught and released on Maria Island were either scared or tired, making them very easy to process.

I learnt during this trip that devils, somewhat unsurprisingly, hate the noise of anything they don’t recognise. They don’t mind the noise of your voices when speaking but they find any noise of fabric rubbing together, clanking of buckets and the sound of the bristles on brushes when they’re being used very distressing. I also learnt that devils have been a victim of a degree of fake news- not all devils have the distinctive white markings that you see on the internet. Many of the devils we processed were completely black or almost completely black (see below photos).

After-thought-

If you’re considering visiting Australia from abroad and you’re interested in seeing wildlife and nature- go to Maria Island. Maria Island is teeming with wombats, Bennet’s wallabies, sea eagles, forester Kangaroos and more. It also has the most pristine air and ocean water of anywhere I’ve visited. The landscapes are incredible, you really cannot go wrong with a visit to this Island if you’re interested in the outdoors. 

Author

Matt Spadaro

post

How to catch a koala

by Dr. Luke Silver

Until recently, the majority of research in the Australasian Wildlife Genomics Group occurred on the Tasmanian devil and trapping these marsupial carnivores is quite a straightforward process. Setting a trap overnight baited with a tasty piece of fresh meat to lure the devils inside. Recently, I was lucky enough to be invited to Kangaroo Island to help out on a koala field trip. It turns out trapping herbivorous marsupials is a far more demanding task as unfortunately you cannot lure a koala with a fresh branch of Eucalyptus leaves.

Can you spot the Koala in the trees?

Firstly, you have to actually find the koala in their environment, which can range of extremely tall Eucalyptus trees to highly dense shrubbery regions of bush. Fortunately, n Kangaroo Island koalas are so numerous locating one is not as difficult a task in areas such as NSW and QLD where koala numbers a much lower. After finally locating a koala the real work begins, coaxing the individual out of its comfortable and safe perch within the tree. This is best achieved by using an extendable pole with a piece of fabric attached to the end and simply waving this in front of the koala, who in ideal circumstances slowly backs down the tree trunk to height where they can be captured. Often, this is not the case, with koalas using any avenue possible to escape, including jumping to another nearby branch or tree. Being able to go into the field and see the animals we work up close is just one of the perks of working in wildlife research.

Koalas in trees

Author

Luke Silver

Luke Silver (PhD Student) is using genomic data to
investigate immune genes in Australian marsupials with a focus on koalas where he is using resequenced genomes to examine patterns of diversity in functional and neutral regions of the genome across the entire east coast of Australia. This work will be used to inform conservation and management decisions in the fight to save our threatened species.

post

The error in your way: a beginner’s guide to troubleshooting command error messages

by Adele Gonsalvez

As a bioinformatic newbie, there is a lot to wrap your head around – from understanding basic programming language to what commands you need to use. In my experience, one particular gem is when you are trying to run a command and you receive one in a series of often uninformative error messages. Troubleshooting will end up dominating your time when you are doing any kind of coding, and it can be incredibly frustrating. So, instead of swearing at your computer (although that can be therapeutic at times), here’s some handy tips I’ve picked up that can be more effective in addressing that pesky error message.

It may seem like a minor issue, but in my experience most command errors come from typos, and they can be tricky to spot. Step through your command or script to ensure there aren’t any spelling mistakes or extra spaces at the end of commands. Also ensure file paths are correct, and input files exist and are correctly named.

ChatGPT is an incredibly useful tool for troubleshooting both error messages and general command generation. Specifying the error code, ChatGPT can outline the various causes for that error message and suggests how to go about addressing the issue.

Leave it for a couple hours. The human version of “Did you try turning it off and on again?”. Like any form of editing, if you have been staring at the same bit of text for too long, it is easy to gloss over misspelt words or extra spaces. Revisiting it later can help you find issues that you previously overlooked.

Ask your co-workers to look over your command or script. It’s likely that some of them will be more experienced in bioinformatics and can shed some light on what’s going wrong. Even if none of your coworkers are familiar with coding, a fresh set of eyes can often spot little mistakes much better than your own. I once spent hours trying to solve an error in a script, which only took for my friend 30 seconds to solve (it was an extra space at the end of a command).

Adele Gonsalvez (2022 Honours Student) is investigating the expression and the antimicrobial activity of defensins from the platypus and short-beaked echidna

post

IT’S MOVING DAY: Threatened Species Edition

by Andrea Schraven (PhD Student)

Moving house, city, or country always has its challenges, from adapting to a new environment to establishing connections with unfamiliar neighbours. For threatened species, the concept of moving from one area to another is no less daunting.

However, in the realm of conservation management, ‘moving day’ can be the difference between survival and extinction of endangered animals. Translocations are defined as the “intentional movement of living organisms from one are to another” by the International Union for Conservation of Nature (IUCN), and they represent a strategic effort to give struggling species a fighting chance.

Translocations come in many forms, each serving a unique purpose in species conservation management:

  • Re-introduction involves moving individuals back in areas where they use to exist but have disappeared, thereby giving them a second chance to thrive in their historical habitat.
  • Reinforcements help already existing populations of a species that are currently struggling by moving in additional individuals from another population to boost their chances of persisting.

Assisted Colonisations will introduce a species to a new and suitable habitat where they can establish themselves, often occurring when a species is unable to survive in its original habitat.

Releasing Tasmanian Devil on Maria Island, Australia. © Luke Silver

Deciding on where to move a species to is more than just merely picking the best house in the neighbourhood. Managers of a species must carefully consider numerous factors when choosing their new home. This includes evaluating the availability of resources, identifying potential threats that may jeopardize long term sustainability, and understanding behavioural dynamics such as competition among individuals.

Moreover, determining the effectiveness of translocations necessitates continued monitoring and assessment after the release. Population viability in the long term requires documenting a translocated individual’s ability to acclimate to their new environment and monitoring their survival. Additionally, managers need to monitor the reproductive output and analyse population growth trends to determine if the population is sustainable, or if continued interventions are required.

So next time you here about a species being relocated or released into the wild, remember – it’s not just a new home, but a translocation that could be a potential lifeline for the survival of an entire species.

Author

Andrea Schraven (PhD Student; co-supervised with Dr Catherine Grueber) is projecting the long-term impacts of supplementation to improve the status of wild Tasmanian devil populations with the ongoing threat of DFTD. By evaluating population genetic and fitness data before and after translocations, she is comparing how populations change over a few generations, and then feeding the data into computational models to simulate “evolutionary time”. The results will directly inform conservation management decisions for the species long-term recovery.

post

Australia’s best kept secret: the dunnart

by Kiara Jones (Honours Student)

Since starting my Honours research project last year, the question I have been asked the most is: “What is a dunnart? How have I never heard of this adorable Australian native?”

These little predators resemble a small European mouse, but they are actually marsupials and therefore more closely related to the kangaroos and koalas than they are to any mouse. During their breeding season, their teeny-tiny pouch that can change from being the size of a tic tac, to being packed with 8-10 dunnart joeys within just a few weeks. There are nineteen known dunnart species found across Australia, in a variety of habitats such as woodlands, dry sclerophyll forest, grasslands and deserts. The fat-tailed dunnart is widespread and found in most of inland Southern Australia, and this is the species involved in my research. But don’t be disheartened – these cute creatures are of minimal conservation concern. Dunnarts are a great animal model for research and are instead being used to help us better understand marsupial biology.

So, it sounds like dunnarts are found practically everywhere and you may find yourself wondering a new question: “Why haven’t I seen them or heard of them before?” Firstly, like most members of the Dasyuridae family, dunnarts are nocturnal. They emerge at nighttime to hunt down their prey, feasting on crickets, beetles, spiders, lizards, and even small frogs. Although they may be a scary predator to some smaller species, dunnarts are the perfect meal for larger predators like birds, feral foxes, and cats. This means that during the day, they’ll often be tucked away in hollow logs or nesting in clumps of tall grass where they can be well-hidden. For these reasons, it’s unlikely that you’ll see a wild dunnart unless you’re actively looking for them. And if you do accidentally disturb a nesting dunnart on your weekend hike, it’ll probably scurry away so quickly and quietly that you wouldn’t even notice.

Dunnarts also exhibit a cool behaviour called ‘torpor’, which is like hibernation’s younger cousin. Torpor is a physiological adaptation that helps the animal conserve energy. In torpor, metabolic rate and body temperature drops significantly and they become as still as a statue. Interestingly, dunnarts often rely on the external environment to bring them out of torpor. For example, some may position themselves in a spot (such as a rock crevice) where they know the sun will hit. That way they can time the end of their torpor and warm their body back up without requiring any effort. But they have to be careful to get moving quickly, because that direct sunlight will make them especially vulnerable to a soaring predator overhead!

post

When Cells Rebel: the dark side of evolution

by Patra Petrohilos (PhD Student)

I love dystopian horror. I love to relish in the thrill of disgust from the comfort of safety – a comfort bolstered by the knowledge that such grotesquerie could never actually happen in real life. Zombies don’t exist. Monsters aren’t trying to escape from the underworld. Cancer isn’t contagious. Actually, maybe scratch that last one. . .

You see, nature may not have the imagination of Stephen King, but it does have something even more powerful in its arsenal: mutations. Mutations are to evolution what creativity is to horror writers – the raw material that allows them to conjure up new and wondrous forms. From the most beautiful (buttercups, butterflies, butter yellow bumblebees) to the most horrific (flesh eating bacteria, pandemic inducing viruses, cancer cells).

Evolution favours the fittest individuals, be they butterflies or bacteria. In this case, “the fittest” just means the ones that are most successful at reproducing. If we are talking about koalas, reproduction means making cute little baby koalas. Everyone likes those. But when we’re talking about cancer cells, reproduction means growing and spreading and killing one’s host. Nobody likes that. Even the cancer cells probably wouldn’t like it – because killing their host also means killing themselves in the process. Kind of like a suicide bomber without the political motivation. But evolution is blind to morality and selects for the cute little baby koalas and murderous cancer cells equally – whatever is most efficient at making more copies of itself. Survival of the fittest.

Mutations are constantly arising in nature. Sometimes these make more successful versions of things, sometimes less successful. It’s a bit of a trial-and-error process. And somewhere in that trial-and-error process, a handful of cells have stumbled across the secret to become the most successful cancer cells ever. Super-cancers! How? By finding a sneaky way around that whole unfortunate dying-when-your-host-dies bit.

They do this by taking a leaf out of the life history book of parasites. Like cancer cells, many parasites are reliant on a host to survive. But unlike cancer cells, many parasites have the power to survive the death of their host by simply finding a new host – a power that evolution has also bestowed upon these super-cancers.

Yes, nature has managed to take one of the most awful diseases known to humanity and done perhaps the only thing that could make it worse. It has made it contagious.

Thankfully, such contagious super-cancers are mercifully rare and none of them affect humans (yet). But the rest of the animal kingdom has not fared quite so well. Leukaemia cells drift through the sea like hidden assassins, spreading from one unsuspecting clam to the next. Dogs can get mushroom shaped tumours on their penises from sex with a poorly chosen partner. And one of our most iconic Australian animals, the Tasmanian devil, is at risk of extinction from not only one but two contagious cancers (creatively named Devil Facial Tumour Disease 1 and Devil Facial Tumour Disease 2). Sometimes lightning really does strike twice.

The good news is, this is where we come in. By researching Devil Facial Tumour Disease – one of the most uniquely horrifying and bizarre diseases to ever arise – we aim to understand how it works, how it spreads, how it evolves and, hopefully one day, how we can stop it.

Follow me for more fun and uplifting facts about the animal world!

Author:

Patra Petrohilos

Patra Petrohilos (PhD Student) is researching the evolution of devil facial tumour disease (DFTD). By investigating anticancer properties of naturally occurring peptides, she is aiming to identify novel agents with therapeutic potential against DFTD. Patra Petrohilos is a PhD student with the Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science (CIPPS). Follow their exciting research at https://cipps.org.au.

post

How to catch a Tasmanian devil

by Dr Elspeth McLennan (Post-doc)

Tasmanian devils are nocturnal. We set traps during the day and overnight curious devils will come to investigate. The traps we use are made of strong PVC plastic fashioned into a cylinder with a spring trap door (see cover picture). The traps are baited with a devil’s favourite treat, a piece of fresh lamb or wallaby. The meat is tied onto the end of a string, fed through the trap, and tied to a pin which holds the door open.

Tasmanian devil inside trap

When a devil comes investigating the smell of the meat, they walk to the end of the trap and take the bait. When the meat is pulled and eaten, the pin holding the door open is pulled free and the door swings shut. A second pin slides forward as the door closes and locks it. Devils spend the night in a cosy enclosed space with a full belly. The field biologists begin checking the traps as soon as the sun is up. As its daylight, we often find devils snoozing in their traps.

To perform a health check on the devil, we place a hessian sack over the opening of the trap, gently tilt the trap and the devil slides forward into the sack. The sack is used to keep the devil’s eyes covered to keep them calm making them easier to handle while we check them over. We take their weight, check their body condition, look for wounds and record pouch young in females. For populations suffering from devil facial tumour disease (DFTD), the disease status of each animal is also recorded. Once the devil has been processed, they are released. On a single trapping trip, we will often see the same devils a few times. The free food and somewhere to crash is clearly a good draw.

Author

Dr Elspeth McLennan

Dr Elspeth McLennan (Post-doc) is working the on the Koala Genome Survey, investigating both neutral and functional diversity across the koala’s range to better understand the impacts of a changing climate. Elspeth has expertise in conservation genetics and using translocation and assisted colonisations as a conservation management tool.

post

Koalas and Chlamydia: How can genomics help?

by Luke Silver (PhD Student) 

The mention of a koala infected with Chlamydia will often be met with rounds of laughter or even concern, “can I get Chlamydia from touching a koala?” For koalas, Chlamydia is no laughing matter with up to 100% of individuals in some populations infected with the bacteria. In many cases infection will lead to blindness, “wet bottom” as a result of bladder infection, infertility and eventually death. Unfortunately, unlike humans, koalas are unable to go to the doctor and receive treatment for the infection. Often koalas are taken to veterinary hospitals after a human interaction (such as vehicle strike or a dog attack) and it is there the infection is noticed and treatment can be administered.

Genomics is the study of the genes and nucleotides contained within an individual’s genome. By studying the genomics of koalas, we have been able to identify important genes which play a vital role in helping a koala clear a Chlamydia infection. One of these genes is a part of the major histocompatibility complex, or MHC, known for its vital role in recognition of pathogens. We are now using the whole genomes of over 400 koalas to investigate how diverse the MHC genes of koalas are across their entire range from northern Queensland to South Australia. A high level of genetic diversity in the MHC results in an individual or population being able to recognise a wider array of pathogens and may be linked to the health of this endangered marsupial. Scientists in other labs are attempting to develop a vaccine which can prevent koalas from contracting the infection in the first place which has shown promising results in early phase testing.

Finally, fortunately you are unable to catch Chlamydia from holding or touching a koala as the species which infects koalas is different from the species which infects humans.

Author

Luke Silver

Luke Silver (PhD Student) is using genomic data to
investigate immune genes in Australian marsupials with a focus on koalas where he is using resequenced genomes to examine patterns of diversity in functional and neutral regions of the genome across the entire east coast of Australia. This work will be used to inform conservation and management decisions in the fight to save our threatened species.

post

Making bioinformatics more accessible

by Dr. Kate Farquharson (Post-doc)

In the AWGG lab, we are generating genomic resources for diverse Australian vertebrates, including birds, marsupials, amphibians and reptiles. However, following bioinformatics instructions can sometimes feel a bit like this:

And for non-model organisms, it can feel like being asked to draw an owl when you don’t even know what one looks like (or worse, imagine being given a picture of a human as a reference point). So, how do we make bioinformatics more accessible to people getting started? We have been working hard to carefully document our in-house workflows and contribute to public how-to guides, such as the Genome Assembly with Galaxy guide.

Documenting your work not only helps others but can be a useful way to remember what you have done before! Good documentation can help you to train others, present your methods and ensure your analysis is reproducible. Some tips for documenting your work include:

  • Always keep track of the software and versions used
  • Try out an editor such as Visual Studio Code, which allows you to easily insert code and scripts and integrates well with Github
  • Don’t forget your science brain! It can be very easy to follow a tutorial from start to finish but have no idea what the end result means. A few sentences to justify your approach and explain how you interpret your results will help others use your guide correctly

Good documentation is just one step we are working on as part of the Threatened Species Initiative and ARC Centre of Excellence in Peptides and Protein Science to make genomics and bioinformatics more accessible to conservation end-users.

Author

Dr Kate Farquharson

Dr Kate Farquharson is a Postdoctoral Research Associate in Bioinformatics within the ARC Centre of Excellence for Innovations in Peptide & Protein Science. She applies bioinformatic approaches to the assembly and annotation of genomes and transcriptomes of Australian species to identify targets for peptide discovery. Kate completed her PhD in the AWGG lab in 2020, where she used statistical and molecular genetic approaches to investigate adaptation to captivity in conservation breeding programs. Kate specialises in synthesising, analysing and interpreting data, and in communicating results clearly to a range of audiences.