The Amphibian Genomics Consortium: advancing genomic and genetic resources for amphibian research and conservation

Type: Journal article

Reference: Kosch, T.A., Torres-Sánchez, M., Liedtke, H.C. et al. The Amphibian Genomics Consortium: advancing genomic and genetic resources for amphibian research and conservation. BMC Genomics 25, 1025 (2024). https://doi.org/10.1186/s12864-024-10899-7

Abstract

Amphibians represent a diverse group of tetrapods, marked by deep divergence times between their three systematic orders and families. Studying amphibian biology through the genomics lens increases our understanding of the features of this animal class and that of other terrestrial vertebrates. The need for amphibian genomic resources is more urgent than ever due to the increasing threats to this group. Amphibians are one of the most imperiled taxonomic groups, with approximately 41% of species threatened with extinction due to habitat loss, changes in land use patterns, disease, climate change, and their synergistic effects. Amphibian genomic resources have provided a better understanding of ontogenetic diversity, tissue regeneration, diverse life history and reproductive modes, anti-predator strategies, and resilience and adaptive responses. They also serve as essential models for studying broad genomic traits, such as evolutionary genome expansions and contractions, as they exhibit the widest range of genome sizes among all animal taxa and possess multiple mechanisms of genetic sex determination. Despite these features, genome sequencing of amphibians has significantly lagged behind that of other vertebrates, primarily due to the challenges of assembling their large, repeat-rich genomes and the relative lack of societal support. The emergence of long-read sequencing technologies, combined with advanced molecular and computational techniques that improve scaffolding and reduce computational workloads, is now making it possible to address some of these challenges. To promote and accelerate the production and use of amphibian genomics research through international coordination and collaboration, we launched the Amphibian Genomics Consortium (AGC, https://mvs.unimelb.edu.au/amphibian-genomics-consortium) in early 2023. This burgeoning community already has more than 282 members from 41 countries. The AGC aims to leverage the diverse capabilities of its members to advance genomic resources for amphibians and bridge the implementation gap between biologists, bioinformaticians, and conservation practitioners. Here we evaluate the state of the field of amphibian genomics, highlight previous studies, present challenges to overcome, and call on the research and conservation communities to unite as part of the AGC to enable amphibian genomics research to “leap” to the next level.

The Conversation: Strong progress – from a low base: here’s what’s in NSW’s biodiversity reforms

Professor Carolyn Hogg from the Faculty of Science at the University of Sydney, Jaana Dielenberg from Charles Darwin University and Professor Hugh Possingham from the University of Queensland discuss the NSW Government’s proposed major overhaul of the Biodiversity Conservation Act.

Find the full article here: https://theconversation.com/strong-progress-from-a-low-base-heres-whats-in-nsws-biodiversity-reforms-234917

Australia’s ‘Easter bunny’, the bilby, has had its genome fully sequenced

Under pressure from predatory foxes and cats and competing with feral rabbits, the Greater bilby has lost more than 80 percent of its habitat. Conservation work led by Professor Carolyn Hogg is designed to help save the bilby from extinction.

Read the full article here: https://www.sydney.edu.au/news-opinion/news/2024/07/01/australia-greater-bilby-genome-sequenced-marsupial-conservation.html

Translating genomic advances into biodiversity conservation

Type: Journal Article

Reference: Hogg, C.J. Translating genomic advances into biodiversity conservation. Nat Rev Genet (2023). https://doi.org/10.1038/s41576-023-00671-0

Abstract

A key action of the new Global Biodiversity Framework is the maintenance of genetic diversity in all species to safeguard their adaptive potential. To achieve this goal, a translational mindset, which aims to convert results of basic research into direct practical benefits, needs to be applied to biodiversity conservation. Despite much discussion on the value of genomics to conservation, a disconnect between those generating genomic resources and those applying it to biodiversity management remains. As global efforts to generate reference genomes for non-model species increase, investment into practical biodiversity applications is critically important. Applications such as understanding population and multispecies diversity and longitudinal monitoring need support alongside education for policymakers on integrating the data into evidence-based decisions. Without such investment, the opportunity to revolutionize global biodiversity conservation using genomics will not be fully realized.