Building meaningful collaboration in conservation genetics and genomics

Type: Journal article

Reference: Shaw, R.E., Brockett, B., Pierson, J.C. et al. Building meaningful collaboration in conservation genetics and genomics. Conserv Genet 25, 1127–1145 (2024). https://doi.org/10.1007/s10592-024-01636-4

Abstract

Genetic diversity is the foundation of biodiversity, and preserving it is therefore fundamental to conservation practice. However, global conservation efforts face significant challenges integrating genetic and genomic approaches into applied management and policy. As collaborative partnerships are increasingly recognized as key components of successful conservation efforts, we explore their role and relevance in the Australian context, by engaging with key entities from across the conservation sector, including academia, botanic gardens, herbaria, seed banks, governmental/non-governmental organisations, private industry, museums, Traditional Owners, Indigenous rangers, and zoos and aquaria. By combining perspectives from these entities with comprehensive literature review, we identified five guiding principles for conservation genetic and genomic research and explored the different elements of, and approaches to, collaboration. Our reflections suggest that there is a substantial overlap in research interests across the Australian conservation sector, and our findings show that collaboration is increasing. We discuss approaches to building collaborative partnerships, the reciprocal benefits of collaborating, and some remaining challenges associated with data generation, data collection, and cross-cultural considerations. We emphasise the need for long-term national resourcing for sample and data storage and consistency in collecting, generating and reporting genetic data. While informed by the Australian experience, our goal is to support researchers and practitioners to foster meaningful collaborations that achieve measurable management outcomes in conservation genetics and genomics, both in Australia and globally.

The future is here: an easy-to-use toolkit for integrating genetics into conservation management

Type: Journal article

Reference: Hogg, C.J., Farquharson, K.A., Brandies, P., Silver, L.W., Ottewell, K., McLennan, E.A., Richmond, S. and Belov, K. (2025), The future is here: an easy-to-use toolkit for integrating genetics into conservation management. Anim Conserv, 28: 93-103. https://doi.org/10.1111/acv.12971

Abstract

Over the past decade, the development of genetic and genomic tools for conservation management has come forward in leaps and bounds. Once considered a ‘nice to have’, genetic data are fast becoming an essential tool for informing and managing translocations. However, due to the complexity of the field, easily using genetic data for decision-making and monitoring remains beyond the reach of most managers and conservation biologists. In May 2020, we launched the Threatened Species Initiative (TSI), a programme designed to generate genomic resources for Australia’s threatened species. Critical to the project is not only the generation of reference genomes and population genetic data but an online toolkit for conservation managers. The toolkit is a ‘one stop shop’ from collecting samples, to generating and analysing genetic data, to an easily interpretable genetic management report. A series of workflows and pipelines have been developed, including the TSI Biodiversity Portal, that uses point and click web interfaces to easily transfer raw sequence data and assemble genomes, transcriptomes and soon population genetics for management decisions. Here we present how the current toolkit works and provide case study examples for how it is being used to inform translocations and the management of threatened species.

Conservation management in the context of unidentified and unmitigated threatening processes

Type: Journal Article

Reference: Stojanovic, D., Hogg, C. J., Alves, F., Baker, G. B., Biggs, J. R., Bussolini, L., Carey, M. J., Crates, R., Magrath, M. J. L., Pritchard, R., Troy, S., Young, C. M., & Heinsohn, R. (2023). Conservation management in the context of unidentified and unmitigated threatening processes. Biodiversity and Conservation, 1-17. doi: 10.1007/s10531-023-02568-0

Abstract

The decision to intervene in endangered species management is often complicated. Migratory species exemplify this difficulty because they experience diverse threats at different times and places that can act cumulatively and synergistically on their populations. We use population viability analysis (PVA) to compare potential conservation interventions on the critically endangered, migratory Orange-bellied Parrot Neophema chrysogaster. This species suffers high juvenile mortality, but it is not clear why this is so. Given uncertainty about the best recovery strategy, we compare PVA scenarios that simulate various ways of utilizing captive-bred parrots to support the wild population in the context of unresolved threatening processes. Increasing the number of juveniles entering the population each year had the greatest benefit for population growth rate and size. Directly lowering juvenile mortality rates is difficult given uncertainty about the drivers of mortality in the wild. In lieu of this, releasing 100 juveniles from captivity to the wild population each autumn (either as a stand-alone action, or in combination with other interventions) was the most feasible and straightforward intervention of the options we tested. However, our PVAs also show that unless substantial and sustainable reductions can be made to juvenile mortality rates, Orange-bellied Parrots will remain dependent on intensive conservation management. This study highlights the utility of PVAs for answering practical questions about how to implement species conservation. PVAs provide a way to incorporate the best available information in a replicable modelling framework, and to identify impacts of parameter uncertainty on demographic trends.

See all our publications HERE!

Reproductive skew in a Vulnerable bird favors breeders that monopolize nest cavities

Type: Journal Article

Reference: Stojanovic, D., McLennan, E., Olah, G., Cobden, M., Heinsohn, R., Manning, A. D., Alves, F., Hogg, C. & Rayner, L. (2023). Reproductive skew in a Vulnerable bird favors breeders that monopolize nest cavities. Animal Conservation. doi: 10.1111/acv.12855

Abstract

Reproductive skew occurs when a few individuals monopolize breeding output, which can act as a mechanism of natural selection. However, when population sizes become small, reproductive skew can depress effective population size and worsen inbreeding. Identifying the cause of reproductive skew is important for mitigating its effect on conservation of small populations. We hypothesized that superb parrots Polytelis swainsonii, which strongly select for the morphology of tree cavity nests, may be reproductively skewed toward pairs that monopolize access to nests. We use SNP genotyping to reconstruct a pedigree, estimate molecular relatedness and genetic diversity of wild superb parrot in the Australian Capital Territory. We successfully genotyped 181 nestlings (a census between 2015–2019) and showed they were the progeny of 34 monogamous breeding pairs. There was a strong reproductive skew – 21 pairs bred only once producing 40% of the nestlings, whereas 13 pairs bred two to four times, producing 60% of the total nestlings. Five of these repeat-breeders produced 28% of all nestlings, which was nearly triple the productivity of one-time breeders. Repeat breeders usually monopolized access to their nest cavities, but the few pairs that switched nests did not differ in fecundity from those that stayed. The cause of nest switching was unknown, but uninterrupted access to a suitable nest (not minor variations in morphology between nests) better predicted fitness of breeding superb parrots. Pedigrees offer powerful insights into demographic processes, and identifying reproductive skew early provides opportunities to proactively avoid irreversible loss of genetic diversity via conservation management. We identify new research questions based on our results to clarify the relationship between access to resources and breeding success.

See all our publications HERE!